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The design of synthetic receptors that recognize functional
groups on the surface of a protein is poorly developed in
comparison to inhibitors that bind in enzyme active sites.1 Yet,
surface interactions, mediated by complementary shape and
charge distribution,2,3 often are essential for the functional role
of a protein. The extensive solvation of charged and polar
functional groups on the protein exterior introduces complexities
into surface recognition. Approaches that make use of metal
binding4 and multiple charge-charge interactions5 have targeted
secondary structural units such as theR-helix. Our strategy has
been to use hydrogen-bonding groups in recognizing and
stabilizingR-helices as models for protein surfaces.6 Herein
we report that a tetraguanidinium-based receptor (1) binds
strongly to a peptide with four aspartate residues (2) and
stabilizes it in anR-helical conformation.
Molecular-modeling studies showed that1 wraps around an

ideal right-handedR-helix conformation of peptide2, in a coiled
left-handed helix, with an almost perfect matching of each
guanidinium moiety with the corresponding carboxylate group
of the aspartate residues. Molecular dynamics at 300 K showed
that the doubly coiled structure was stable after 500 ps7 (Figure
1) while theR-helix of the peptide alone was destroyed after
only a few ps.
The synthesis of guanidinium receptors1 and3-6 has been

reported (Figure 2).8 The mean spacing between the guani-
dinium central carbons of1 in its outer helical conformation is
8.9 Å (Figure 1) and complements the carbon-carbon distances
of the carboxylates of2 in an innerR-helix (7.0 Å, Figure 1).
These molecules have been shown to adopt a helical conforma-
tion around sulfate anions.8 Peptides2, 7, and 8 were

synthesized9 to include a C-terminal Tyr to assist concentration
determination10 and C- and N-terminal capping to reduce helix
macrodipole effects. Theall-R and all-S enantiomers of the
silyl-protected tetraguanidinium and the di(hydroxy)tetraguani-
dinium were assayed for their binding behavior to the tetracar-
boxylate form11 of peptide2 by CD spectroscopy. Increasing
amounts of tetraguanidinium (0-250 µM) were added to a
standard solution of the target peptide (∼50 µM) in 10% H2O/
90% CH3OH. CD spectra showed a marked increase in
R-helicity (minima at 222 and 208 nm) upon addition of the
tetraguanidinium solution. The resulting binding curves were
fitted by a 1:1 binding model, and the calculated association
constants are collected in Table 1. To probe the stoichiometry
of the association, we conducted a Job CD titration12 between
peptide2 and receptor3 in 10% H2O/90% CH3OH. Maximum
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Figure 1. Last structures obtained after 500 ps trajectories of
unrestrained molecular dynamics for (A) complex between tetraguani-
dinium (1) and DDDD (2) peptide and for (B) 2 alone.

Figure 2. Receptors and peptide sequences used in binding studies.
(A) Theall-S enantiomers of structures1 and3 are designated5 and
6, respectively. (B) Amino acid sequences.
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signal change in the Job titration was observed at 0.5 mol
fraction of the peptide, indicative of 1:1 complexation.
Detailed information on the binding process was derived from

NMR studies of the tetraaspartate peptide2 alone and in the
presence of the nonprotected,all-R tetraguanidinium receptor
1.15 In 10% H2O /90% CH3OH, both bound and unbound
peptides show strong NiNi+1, and NiNi+2,3 andRiNi+3 NOEs,
which are typical for helical conformations. Nevertheless, the
first three N-terminal (Ala 1-3) and last two C-terminal (Ala
15, Tyr 16) residues including the capping acetyl and carbox-
amide motifs appeared to be structured only in the presence of
receptor1, as suggested by the occurrence of a continuous series
of NiNi+1 NOEs of the now nondegenerate amide protons.
Furthermore, for all non-Asp residues, the conformation sensi-
tive HR protons shifted drastically upfield by as much as 76%
upon addition of2 to a total helicity of 44%, in comparison to
25% for the peptide alone. This helical stabilization is in good
agreement with the CD results and was shown to be independent
of changes in peptide concentration. The long series of
sequential and medium-range NN NOEs combined with the
strong upfield shift of the HR protons upon addition of receptor
1 indicates that the helical conformation spans the whole
sequence, a rather unusual feature in a peptide of this size. A
direct indication of 1:1 complex formation through interaction
between the four negatively charged Asp residues of the peptide

and the four positively charged residues of guanidinium receptor
1 comes from analysis of TOCSY spectra of both the free
peptide and the complex (Figure 3). As shown in Figure 3A,
in the absence of receptor1, peptide2 shows in the amideâ-Asp
region only a moderate amide chemical shift dispersion (0.12
ppm) and degenerateâ-protons for three Asp residues (residues
4, 10, and 13). This situation changes dramatically in the
presence of the receptor. In the same region, the spectrum of
the complex (Figure 3B) shows a much larger amide chemical
shift dispersion (0.40 ppm) and, even more relevant, a clear
differentiation between diastereotopicâ-protons for allâ-Asp
residues withââ′ chemical shift differences as large as 0.22
ppm. This splitting of Aspâ-protons is a strong indication of
a well-defined structure, similar to that observed in proteins with
a particular tertiary structure.
Two additional peptide sequences were synthesized based

directly on DDDD peptide2. The primary amido group of Asn
was used to approximate a neutral isostere for aspartate. CD
binding studies between receptor3 and peptides DDDN (7) and
DDNN (8) showed a correspondence between the number of
aspartates and the degree ofR-helical stabilization. The
strongest binding occurs between the tetraaspartate peptide and
the tetraguanidinium molecules, clearly pointing to the key role
played by guanidinium-carboxylate interactions. An associa-
tion constant of 1-2 × 105 M-1 between3 and DDDD (2) in
10% H2O/90% CH3OH leads to a stabilization (Figure 4) of
theR-helical conformation by almost 150%.
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Table 1. Binding Affinities of Peptide Substrates with
Guanidinium Receptors and Helix Stabilization on Binding

sequence receptor Ka (M-1) Hi
a Hf

b ∆c ∆∆d

DDDD (2) 1 (3.40( 1.2)× 105 21.1 45.3 24.2 142
3 (1.56( 0.6)× 105 61.2 40.1 143
5 (2.90( 1.3)× 105 39.3 18.2 106
6 (2.41( 0.9)× 105 50.6 29.5 132
4e (8.52( 3.2)× 103 29.1 8 43

DDDN (7) 3 5.65× 104 29.9 44.7 14.8 45
DDNN (8) 3 3.80× 104 55.7 50.4 -5.3 -10

a Initial percentage helicity.13 b Final percentage helicity, at 2 equiv
of receptor.cChange in percentage helicity (∆ ) Hf - Hi). dPercentage
stabilization (∆∆ ) ∆/Hi). eUncorrected for4 CD absorbance. Figure 3. (A) Expansion of TOCSY spectrum (Asp-â region) of2 in

90% MeOH at 288 K. (B) Expansion of TOCSY spectrum (Asp-â
region) of2 in the presence of1 in 90% MeOH at 288 K.

Figure 4. Binding Curves for CD titrations of (a) receptor3 with
DDDD (b) sequence, (b)3 with DDDN (9), and (c)3 with DDNN
(2) in 10% H2O/CH3OH at 25°C.
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